Ədəbiyyatın son icmalı tarixi: Sentyabr 2016. | Məqalənin son icmalı tarixi: Mart 2016. | Məqalənin növbəti yenilənməsi tarixi: Mart 2019.
GİRİŞ — Xronik obstruktiv ağciyər xəstəliyi (XOAX) klinik və molekulyar (məs., genetik) risk faktorlarının qarşılıqlı təsiri nəticəsində yaranır. Bu qarşılıqlı təsirin nəticəsidir ki, eyni klinik risk faktorlarla malik iki fərddən yalnız birində XOAX inkişaf edir. XOAX-ın inkişafına səbəb olan risk faktorların aşkar edilməsi və onların qarşılıqlı təsirinin aydınlaşdırılması XOAX-ın profilaktikası və müalicəsində önəmli rol oynaya bilər.
AĞCİYƏRLƏRİN FUNKSİYASI — Uşaqlıq və yeniyetməlik dövründə ağciyər toxuması böyüdükcə ağciyərlərin funksiyası da artır. Ağciyərlərin funksional imkanları 20 yaşda ən yüksək zirvəyə çatır və sonradan tədricən azalmağa başlayır. XOAX-ın inkişafına səbəb olan risk faktorlar aşağıdakı dəyişikliklərdən bir və ya bir neçəsində gətirib çıxarır:
- ağciyər toxumasının inkişafdan qalması
- ağciyər funksiyasının vaxtından əvvəl zəifləməsi
- ağciyər funksiyasının sürətli zəifləməsi.
Ağciyər funksiyasının sürətli zəifləməsi daha çox rast gəlinir. Lakin yuxarıda qeyd edilmiş proseslər nəticəsində ağciyər funksiyasının ciddi pozğunluğuna səbəb ola və həmin şəxsdə XOAX diaqnozunun qoyulması ilə nəticələnə bilər.
KLİNİK RISK FAKTORLAR — XOAX-ın inkişafına səbəb olan əsas risk faktorlara tütünçəkmə və tənəffüs yollarının artmış reaktivliyi aiddir. Tütünçəkmə, atopiya və antioksidantların çatışmazlığı ilə yanaşı digər ətraf mühit faktorları XOAX-ın inkişafında risk faktoru qismində çıxış edə bilər.
Tütünçəkmə — Çoxsaylı epidemioloji tədqiqatlar sübut edib ki, tütünçəkmə XOAX-ın inkişafına səbəb olan ən mühüm risk faktorudur. Misa üçün, 8045 xəstənin iştirakı ilə aparılmış retrospektiv koqort tipli tədqiqat nəticəsində müəyyən edilib ki, heç vaxt siqaret çəkməyənlərlə müqayisədə 25 il ərzində siqaret çəkən şəxslərdə XOAX-ın inkişafı daha çox qeydə alınır (8% vs 36%, yəni təxminən 4 dəfə çox). Nargilə və ya qəlyan vasitəsilə tütünün çəkilməsi də XOAX-ın inkişafı riskini əhəmiyyətli dərəcədə artırır. Beləliklə, tütün tüstüsünün sudan keçərək filtrasiya olunması və suyun burada qoruyucu effektə malik olması mifi öz təsdiqini tapmamışdır. Fərdin genetik və ya irsi xüsusiyyətləri tütün tüstüsünün zərərli təsirinə həssaslığı daha da artıra bilər.
Tədqiqatlar göstərib ki, tütünlə yanaşı marixuananın çəkilməsi XOAX və respirator simptomların inkişafı riskini iki qat artırır.
Tənəffüs yollarının reaktivliyi — Allergenlər və ya digər xarici triqqerlərin təsiri nəticəsində yaranan tənəffüs yollarının reaktivliyi XOAX-ın inkişafı ilə bağlı olan risk faktorudur. Belə ki, bir çox klinik tədqiqatlarda, o cümlədən 9651 xəstənin iştirakı ilə aparılmış retrospektiv koqort tipli tədqiqatda müəyyən edilmişdir ki, tənəffüs yollarının reaktivliyi olmayan xəstələrlə müqayisədə tənəffüs yollarının reaktivliyi olan xəstələr arasında XOAX daha çox hallarda inkişaf edir.
Dəqiq məlumdur ki, tənəffüs yollarının reaktivliyi və tütünçəkmə XOAX-ın inkişafına səbəb olan risk faktorlardır. Lakin bu iki faktorun qarşılıqlı təsiri dəqiq məlum deyildir.
Ətraf mühitin təsiri — Ətraf mühitdə olan mikrohissəciklər, toz, qazlar, tüstü və ya orqanik antigenlərin təsirinə məruz qalma da XOAX-ın inkişafına təsir edən risk faktorlarına aid edilir.
Cins — Kişilərlə müqayisədə qadınlarda XOAX və emfizema daha tez inkişaf edir. Tədqiqatlar göstərir ki, kişilərdən fərqli olaraq, qadınlarda XOAX və ya emfizemanın inkişafı üçün daha az müddət siqaret çəkmək tələb olunur. Bu o deməkdir ki, qadınlar siqaretin təsirinə daha tez məruz qalır və ya daha həssasdır.
Atopiya — Atopiya XOAX-ın inkişafı riskini artıra bilər. Atopiyası olmayan xəstələrlə müqayisədə astması olmayan atopiyalı xəstələrdə XOAX-ın inkişaf riski daha yüksəkdir. Atopiyanın təsirini müəyyən etmək üçün tədqiqatlarda ev tozu, qarışıq otlar, müxtəlif ağaclar və ətirşah (ambrosiya) allergen kimi istifadə edilmişdir. Bu allergenlər dəriyə iynə ilə yeridilmiş və ölçüsü >2 mm-dən böyük olan qabarmalar qeydə alındıqda xəstələrdə atopiyanın olduğu təsdiq edilmişdir. Heyvanlarda aparılmış tədqiqatlar da atopiya ilə XOAX-ın inkişafı arasında əlaqənin olduğunu sübuta yetirib. Atopiyası olmayan xəstələrlə müqayisədə atopik xəstələrdə ağciyər funksiyasını xarakterizə edən FEV1 və FEV1/FVC-də daha sürətli azalma müəyyən edilir.
Antioksidant çatışmazlığı — Antioksidant funksiyalarına malik vitaminlərin (məs., Vitamin C və E) çatışmazlığının XOAX-ın inkişafı ilə əlaqəli olduğu bəzi tədqiqatlarda nümayiş etdirilib. Nəzəri baxımdan qeyd oluna bilər ki, antioksidant vitaminlərin çatışmazlığı orqanizmi ətraf muhitdə olan ekzogen mənbələrdən (məs., tütünçəkmə) və endogen mənbələrdən yaranan oksidativ radikallara (məs., ağciyər faqositləri) qarşı müdafiəsiz edir.
Bronxopulmonar displaziya — Bronxopulmonar displaziya həmçinin yenidoğulmuşların xronik ağciyər xəstəliyi kimi də tanınır. Onun inkişafı vaxtından əvvəl doğuşla bağlıdır. Bronxopulmonar displaziyası olan körpələr doğuşdan sonrakı ilk 28 gün ərzində əlavə oksigendən asılı olur. Neonatal dövrdə orta və ağır dərəcəli bronxopulmonar displaziyası olan yeniyetmə və gənclərdə rentenoqrafiyada emfizema və ağciyərlərin funksional testlərində hava axını sürətinin məhdudlaşması müəyyən edilir.
Vərəm (tuberkulyoz) — Ağciyər vərəmi də tənəffüs yollarının obstruksiyasına səbəb ola bilər. Obstruksiya aşağıdakı proseslərin nəticəsi olaraq inkişaf edir: endobronxial infeksiya və sonradan inkişaf edən bronxostenoz və ya ağciyər parenximasının destruksiyası. Tütünçəkmə və s. risk faktorlardan asılı olmayaraq, ağciyər vərəmi XOAX-ın inkişafına təsir göstərir.
MOLEKULYAR RİSK FAKTORLAR — Müşahidəli tədqiqatlar göstərir ki, XOAX-ın inkişafı həm də molekulyar risk faktorları ilə bağlıdır. Misal üçün, müşahidəli araşdırmanın birində müəyyən edilib ki, birinci dərəcəli ailə üzvləri arasında alfa-1 antitripsin çatışmazlığı ilə əlaqəli olmayan ağır dərəcəli XOAX-ın olması, XOAX-ın inkişafı riskini 3 dəfə artırmış olur.
Genlərin polimorfizmi — XOAX-ın riskinin artmasına təsir göstərən bir neçə gen polimorfizmi müəyyən edilib. Həmin genlərin bir çoxunun funksiyası hələ ki, məlum deyil. Aşağıdakı genlərin rolu tədqiqatlarda araşdırılıb:
- ●Transformasiya edən böyümə faktoru beta 1 – Transforming growth factor beta is a member of a large superfamily of polypeptides involved in cellular growth, differentiation, and activation. SNPs of the gene encoding transforming growth factor beta 1 have been associated with development of COPD in smokers [54,57,58].
●Serpine2 – Serpine2, also known as serpin peptidase inhibitor, was initially identified based on mouse and human fetal lung gene expression and then assessed in a case control study [64]. Serpine2 appears to be a COPD susceptibility gene that may be influenced by gene-by-smoking interaction.
●Genome wide association studies (GWAS) have identified five separate loci as being associated with COPD: 15q25 locus (CHRNA3/CHRN5/IREB2) [59]; 4q31 (near HHIP) [60,61]; and 4q22 (FAM13A) [62]. Two additional loci have been identified at 19q13 (near CYPA6) [63], a locus also associated with cigarette smoking, and 5q32 (near the gene for 5-hydroxytryptamine receptor 4, HTR4) [55], a locus also associated with lung function in the general population. This is a smaller number of loci than have been identified for asthma. The reasons for this are unclear.
●A separate GWAS was performed in a population based cohort (Multi-Ethnic Study of Atherosclerosis [MESA]-SNP Health Association Resource [SHARe]) in the United States and found two SNPs associated with the percentage of lung emphysema determined by computed tomography [65]. In addition, genes related to alpha-mannosidase appeared to be associated with the ratio of upper to lower lobe emphysema in some ethnic groups.
Antioxidant related enzymes — Genetic variation in antioxidant enzyme function or regulation may affect risk for COPD [66]. In particular, the genes for glutathione S-transferases P1 and M1, glutamate cysteine ligase, and superoxide dismutase appear to be involved. Gene association studies are not available for some other antioxidant enzymes (eg, thioredoxin, gamma-glutamyl transferase) that may turn out to be important.
●Glutathione S-transferases – Glutathione S-transferase P1 (GSTP1) aids in the detoxification of a number of substances that are found in cigarette smoke. Decreased glutathione S-transferase P1 activity due to genetic polymorphisms may increase the frequency of COPD [67-69]. Several case-control studies have identified a specific polymorphism in exon 5 (Ile105Val) that is more common among persons with COPD than controls [68,70]. Homozygous deletion of glutathione S-transferase M1 (GSTM1) has been associated with increased COPD risk in some, but not all studies [54,66,67,70].
●Glutamate cysteine ligase – Glutamate cysteine ligase (GCL) is one of the three enzymes that relate to glutathione synthesis. Genetic variants in the promoter region and in the catalytic subunit that cause decreased glutathione levels have been associated with and increase risk of COPD [66,71].
Metalloproteinase dysregulation — Matrix metalloproteinases (MMPs) are a family of zinc-dependent enzymes that degrade extracellular matrix proteins. The activity of MMPs is regulated by tissue inhibitors of metalloproteinase (TIMPs). Numerous observational studies have demonstrated an association between COPD and abnormal activity of certain MMP or TIMP subtypes [72-76]:
●A case-control study compared the bronchoalveolar lavage fluid of patients with emphysema to normal controls [73]. Patients with emphysema had increased MMP-1 (collagenase-1) expression and absent MMP-12 (macrophage elastase) activity [73].
●Sputum from patients with asthma and COPD has increased MMP-2 (gelatinase A), MMP-9 (gelatinase B), MMP-8 (Collagenase 2), and TIMP-1 activity, compared to controls [74,76]. In addition, patients with stable COPD have an increased concentration of serum TIMP-1, compared to controls and patients with stable asthma [77].
●MMP 12 has been identified as a gene associated with reduced lung function in asthma and early decline in lung function in COPD [78]. This gene has been associated with emphysema in mouse models of COPD [79].
The relationships among MMPs, TIMPs, and COPD are an area of ongoing research, with MMP inhibitors under investigation as therapeutic agents for COPD [72,80,81].
Excess elastase — The possibility that excess elastase contributes to COPD is suggested by two principal observations:
●Premature emphysema is associated with deficiency of alpha-1 antitrypsin, an inhibitor of neutrophil elastase. (See "Clinical manifestations, diagnosis, and natural history of alpha-1 antitrypsin deficiency".)
●Macrophage elastase-deficient mice do not develop emphysema despite intense, long-term exposure to cigarette smoke [79]. This is true even if excess inflammatory cells are attracted to the lung with exogenously administered monocyte chemoattractant protein-1.
RISK REDUCTION — Most of the clinical risk factors for chronic obstructive pulmonary disease (COPD) can be modified. However, it is difficult to directly measure the impact of risk factor modification on the incidence of COPD because of the extended duration between exposure to the risk factor and the onset of measurable airway obstruction. Studies need to be conducted over several decades for direct measurement.
As an alternative approach, most studies determine the rate of lung function decline and use it as an indirect measure of the risk of developing COPD. The goal of risk factor modification is to mitigate lung function decline, since patients with increased lung function decline are more likely to develop COPD. (See 'Lung function' above.)
Indirect evidence suggests that smoking cessation has the greatest impact on preventing COPD. Physical activity and avoidance of inhalational exposures may also reduce the incidence of COPD. Anti-inflammatory therapy and antioxidant therapy have been studied, but appear to have minimal impact on the development of COPD.
Smoking cessation — Smoking cessation reduces the accelerated decline in lung function that is associated with smoking, which decreases the likelihood that COPD will develop [9,82,83].
This was illustrated by a retrospective cohort study (n = 8045) that found the incidence of COPD over 25 years was less among patients who had never smoked or quit smoking than among patients who continued to smoke [9]. Specifically, the incidence of COPD among never smokers, smokers who quit prior to the study, smokers who quit during the initial five years of the study, smokers who quit 5 to 15 years into the study, smokers who quit 15 to 25 years into the study, and those who continued to smoke was 4, 12, 5, 14, 24, and 41 percent, respectively among men. The incidence was 9, 11, 20, 25, 29, and 31 percent, respectively, among women.
Additional benefits of smoking cessation, as well as risks and approaches are discussed separately. (See "Patterns of tobacco use" and "Overview of smoking cessation management in adults" and "Behavioral approaches to smoking cessation".)
Exposure avoidance — Reduction of environmental exposure to particulate matter, dusts, gases, fumes, or organic antigens is associated with slower lung function decline, but to a much smaller degree than smoking cessation.
This was demonstrated by a retrospective cohort study (n = 9651), which found that decreased particulate matter concentration was associated with a small reduction of the annual rate of decline of the forced expiratory volume in one second (FEV1) over 11 years [84]. Specifically, a 10 mcg per m3 annual decrease in the concentration of particulate matter was associated with a 3 mL reduction of the annual decrease of FEV1. This effect is small and of limited clinical relevance to individual patients, but may have public health relevance [85].
In a nine-year prospective cohort study, improved kitchen ventilation and/or use of biogas instead of biomass fuel were associated with a reduced decline in FEV1 [86]. When both interventions were utilized, the decline in FEV1 was decreased by 16 mL/year (95% CI 9-23 mL/year).
A variety of strategies are available to reduce the burden of inhaled particles and gases [1,86]:
●Implement, monitor, and enforce strict control of airborne exposure in the workplace
●Initiate intensive and continuing education of workers, managers, clinicians, and legislators
●Promote smoking cessation since smoking aggravates exposure to other particles and gases
●Improve ventilation in areas where biomass fuels are used for cooking and promote use of clean fuels
Physical activity — Physical activity may mitigate lung function decline in active smokers. In a retrospective cohort study, 6790 volunteers were followed for a median duration of 11 years [87]. Active smokers with a moderate to high level of physical activity were less likely to develop COPD than active smokers with a low level of physical activity (OR 0.77, 95% CI 0.61-0.97). Additional studies are necessary before physical activity can be recommended as a means of decreasing the incidence of COPD.
Anti-inflammatory therapy — The observation that increased airway responsiveness is a risk factor for COPD led to the hypothesis that antiinflammatory therapy may mitigate accelerated lung function decline.
●Inhaled glucocorticoids – The use of inhaled glucocorticoids in young adults to prevent the onset of COPD has not been studied. However, the impact of inhaled glucocorticoids on lung function decline in patients with established COPD has been extensively studied and is discussed separately. (See "Role of inhaled glucocorticoid therapy in stable COPD".)
●Statins – Statins (hydroxymethylglutaryl [HMG] CoA reductase inhibitors) are generally used for their lipid lowering characteristics, but also appear to have anti-inflammatory properties. In observational studies of COPD [88-90], statins have been associated with a lower rate of decline in pulmonary function, reduced rate and severity of exacerbations, rate of hospitalizations, and mortality. However, in a randomized trial that compared simvastatin with placebo in 885 patients with COPD, simvastatin did not attenuate lung function decline or reduce exacerbations. These studies are described in greater detail separately. (See "Management of exacerbations of chronic obstructive pulmonary disease", section on 'Ineffective interventions'.)
The effect of other anti-inflammatory therapies (eg, nonsteroidal anti-inflammatory drugs, systemic glucocorticoids) has not been studied in relevant patient populations.
(N) acetylcysteine — (N) acetylcysteine is a thiol derivative that has potential antioxidant and mucoactive effects. These effects have been explored in patients with COPD with conflicting results, and systematic reviews have found little or no benefit on the reduction in exacerbations or quality of life. (See "Role of mucoactive agents and secretion clearance techniques in COPD", section on 'Thiols and thiol derivatives'.)
The impact of antioxidant therapy (eg, (N) acetylcysteine) on lung function decline was studied in response to observations that antioxidant deficiency may be a risk factor for COPD. A trial that randomly assigned 50 patients with COPD to receive (N) acetylcysteine (600 mg/day) or placebo for three years found no between group difference in the annual rate of lung function decline [91]. Similarly, in a study that used a higher dose of (N) acetylcysteine (1200 mg/day) in 120 patients with COPD, no difference was found in the rate of decline in FEV1, although a slight reduction in the rate of exacerbations was noted in the (N) acetylcysteine group [92]. These studies are described in greater detail separately. (See "Role of mucoactive agents and secretion clearance techniques in COPD", section on 'Thiols and thiol derivatives'.)
BİBLİOQRAFİYA.
- Global Strategy for the Diagnosis, Management and Prevention of COPD, Global Initiative for Chronic Obstructive Lung Disease (GOLD) 2016. www.goldcopd.org (Accessed on March 17, 2016).
- Postma DS, Bush A, van den Berge M. Risk factors and early origins of chronic obstructive pulmonary disease. Lancet 2015; 385:899.
- Eisner MD, Anthonisen N, Coultas D, et al. An official American Thoracic Society public policy statement: Novel risk factors and the global burden of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2010; 182:693.
- de Marco R, Accordini S, Marcon A, et al. Risk factors for chronic obstructive pulmonary disease in a European cohort of young adults. Am J Respir Crit Care Med 2011; 183:891.
- Perret JL, Dharmage SC, Matheson MC, et al. The interplay between the effects of lifetime asthma, smoking, and atopy on fixed airflow obstruction in middle age. Am J Respir Crit Care Med 2013; 187:42.
- Tager IB, Speizer FE. Risk estimates for chronic bronchitis in smokers: a study of male-female differences. Am Rev Respir Dis 1976; 113:619.
- Xu X, Weiss ST, Rijcken B, Schouten JP. Smoking, changes in smoking habits, and rate of decline in FEV1: new insight into gender differences. Eur Respir J 1994; 7:1056.
- Doll R, Peto R. Mortality in relation to smoking: 20 years' observations on male British doctors. Br Med J 1976; 2:1525.
- Løkke A, Lange P, Scharling H, et al. Developing COPD: a 25 year follow up study of the general population. Thorax 2006; 61:935.
- van Durme YM, Verhamme KM, Stijnen T, et al. Prevalence, incidence, and lifetime risk for the development of COPD in the elderly: the Rotterdam study. Chest 2009; 135:368.
- She J, Yang P, Wang Y, et al. Chinese water-pipe smoking and the risk of COPD. Chest 2014; 146:924.
- Celedon JC, Speizer FE, Drazen JM, et al. Bronchodilator responsiveness and serum total IgE levels in families of probands with severe early-onset COPD. Eur Respir J 1999; 14:1009.
- Tan WC, Lo C, Jong A, et al. Marijuana and chronic obstructive lung disease: a population-based study. CMAJ 2009; 180:814.
- Silva GE, Sherrill DL, Guerra S, Barbee RA. Asthma as a risk factor for COPD in a longitudinal study. Chest 2004; 126:59.
- Frew AJ, Kennedy SM, Chan-Yeung M. Methacholine responsiveness, smoking, and atopy as risk factors for accelerated FEV1 decline in male working populations. Am Rev Respir Dis 1992; 146:878.
- O'Connor GT, Sparrow D, Weiss ST. A prospective longitudinal study of methacholine airway responsiveness as a predictor of pulmonary-function decline: the Normative Aging Study. Am J Respir Crit Care Med 1995; 152:87.
- Rijcken B, Schouten JP, Xu X, et al. Airway hyperresponsiveness to histamine associated with accelerated decline in FEV1. Am J Respir Crit Care Med 1995; 151:1377.
- Tracey M, Villar A, Dow L, et al. The influence of increased bronchial responsiveness, atopy, and serum IgE on decline in FEV1. A longitudinal study in the elderly. Am J Respir Crit Care Med 1995; 151:656.
- Brutsche MH, Downs SH, Schindler C, et al. Bronchial hyperresponsiveness and the development of asthma and COPD in asymptomatic individuals: SAPALDIA cohort study. Thorax 2006; 61:671.
- O'Connor GT, Sparrow D, Weiss ST. The role of allergy and nonspecific airway hyperresponsiveness in the pathogenesis of chronic obstructive pulmonary disease. Am Rev Respir Dis 1989; 140:225.
- Agnati LF, Zoli M, Biagini G, Fuxe K. Neuronal plasticity and ageing processes in the frame of the 'Red Queen Theory'. Acta Physiol Scand 1992; 145:301.
- Aanerud M, Carsin AE, Sunyer J, et al. Interaction between asthma and smoking increases the risk of adult airway obstruction. Eur Respir J 2015; 45:635.
- Korn RJ, Dockery DW, Speizer FE, et al. Occupational exposures and chronic respiratory symptoms. A population-based study. Am Rev Respir Dis 1987; 136:298.
- Oxman AD, Muir DC, Shannon HS, et al. Occupational dust exposure and chronic obstructive pulmonary disease. A systematic overview of the evidence. Am Rev Respir Dis 1993; 148:38.
- Sunyer J, Zock JP, Kromhout H, et al. Lung function decline, chronic bronchitis, and occupational exposures in young adults. Am J Respir Crit Care Med 2005; 172:1139.
- Terho EO. Work-related respiratory disorders among Finnish farmers. Am J Ind Med 1990; 18:269.
- Dalphin JC, Debieuvre D, Pernet D, et al. Prevalence and risk factors for chronic bronchitis and farmer's lung in French dairy farmers. Br J Ind Med 1993; 50:941.
- Terho EO, Husman K, Vohlonen I. Prevalence and incidence of chronic bronchitis and farmer's lung with respect to age, sex, atopy, and smoking. Eur J Respir Dis Suppl 1987; 152:19.
- Torres-Duque C, Maldonado D, Pérez-Padilla R, et al. Biomass fuels and respiratory diseases: a review of the evidence. Proc Am Thorac Soc 2008; 5:577.
- Pope CA 3rd, Ezzati M, Dockery DW. Fine-particulate air pollution and life expectancy in the United States. N Engl J Med 2009; 360:376.
- Zhou Y, Wang C, Yao W, et al. COPD in Chinese nonsmokers. Eur Respir J 2009; 33:509.
- Hu G, Zhou Y, Tian J, et al. Risk of COPD from exposure to biomass smoke: a metaanalysis. Chest 2010; 138:20.
- Andersen ZJ, Hvidberg M, Jensen SS, et al. Chronic obstructive pulmonary disease and long-term exposure to traffic-related air pollution: a cohort study. Am J Respir Crit Care Med 2011; 183:455.
- Mehta AJ, Miedinger D, Keidel D, et al. Occupational exposure to dusts, gases, and fumes and incidence of chronic obstructive pulmonary disease in the Swiss Cohort Study on Air Pollution and Lung and Heart Diseases in Adults. Am J Respir Crit Care Med 2012; 185:1292.
- Guillien A, Puyraveau M, Soumagne T, et al. Prevalence and risk factors for COPD in farmers: a cross-sectional controlled study. Eur Respir J 2016; 47:95.
- Kurmi OP, Semple S, Simkhada P, et al. COPD and chronic bronchitis risk of indoor air pollution from solid fuel: a systematic review and meta-analysis. Thorax 2010; 65:221.
- Po JY, FitzGerald JM, Carlsten C. Respiratory disease associated with solid biomass fuel exposure in rural women and children: systematic review and meta-analysis. Thorax 2011; 66:232.
- Kamil F, Pinzon I, Foreman MG. Sex and race factors in early-onset COPD. Curr Opin Pulm Med 2013; 19:140.
- Hardin M, Foreman M, Dransfield MT, et al. Sex-specific features of emphysema among current and former smokers with COPD. Eur Respir J 2016; 47:104.
- Gottlieb DJ, Sparrow D, O'Connor GT, Weiss ST. Skin test reactivity to common aeroallergens and decline of lung function. The Normative Aging Study. Am J Respir Crit Care Med 1996; 153:561.
- Zheng T, Zhu Z, Wang Z, et al. Inducible targeting of IL-13 to the adult lung causes matrix metalloproteinase- and cathepsin-dependent emphysema. J Clin Invest 2000; 106:1081.
- Cantin A, Crystal RG. Oxidants, antioxidants and the pathogenesis of emphysema. Eur J Respir Dis Suppl 1985; 139:7.
- Sanguinetti CM. Oxidant/antioxidant imbalance: role in the pathogenesis of COPD. Respiration 1992; 59 Suppl 1:20.
- Nowak D, Piasecka G, Antczak A, Pietras T. Effect of ascorbic acid on hydroxyl radical generation by chemical, enzymatic and cellular systems. Importance for antioxidant prevention of pulmonary emphysema. Biomed Biochim Acta 1991; 50:265.
- Wong PM, Lees AN, Louw J, et al. Emphysema in young adult survivors of moderate-to-severe bronchopulmonary dysplasia. Eur Respir J 2008; 32:321.
- Lam KB, Jiang CQ, Jordan RE, et al. Prior TB, smoking, and airflow obstruction: a cross-sectional analysis of the Guangzhou Biobank Cohort Study. Chest 2010; 137:593.
- Barnes PJ. Genetics and pulmonary medicine. 9. Molecular genetics of chronic obstructive pulmonary disease. Thorax 1999; 54:245.
- Silverman EK. Genetics of chronic obstructive pulmonary disease. Novartis Found Symp 2001; 234:45.
- Silverman EK, Chapman HA, Drazen JM, et al. Genetic epidemiology of severe, early-onset chronic obstructive pulmonary disease. Risk to relatives for airflow obstruction and chronic bronchitis. Am J Respir Crit Care Med 1998; 157:1770.
- Marciniak SJ, Lomas DA. What can naturally occurring mutations tell us about the pathogenesis of COPD? Thorax 2009; 64:359.
- Silverman EK, Mosley JD, Palmer LJ, et al. Genome-wide linkage analysis of severe, early-onset chronic obstructive pulmonary disease: airflow obstruction and chronic bronchitis phenotypes. Hum Mol Genet 2002; 11:623.
- Silverman EK, Palmer LJ, Mosley JD, et al. Genomewide linkage analysis of quantitative spirometric phenotypes in severe early-onset chronic obstructive pulmonary disease. Am J Hum Genet 2002; 70:1229.
- Palmer LJ, Celedón JC, Chapman HA, et al. Genome-wide linkage analysis of bronchodilator responsiveness and post-bronchodilator spirometric phenotypes in chronic obstructive pulmonary disease. Hum Mol Genet 2003; 12:1199.
- Smolonska J, Wijmenga C, Postma DS, Boezen HM. Meta-analyses on suspected chronic obstructive pulmonary disease genes: a summary of 20 years' research. Am J Respir Crit Care Med 2009; 180:618.
- Wilk JB, Shrine NR, Loehr LR, et al. Genome-wide association studies identify CHRNA5/3 and HTR4 in the development of airflow obstruction. Am J Respir Crit Care Med 2012; 186:622.
- Soler Artigas M, Loth DW, Wain LV, et al. Genome-wide association and large-scale follow up identifies 16 new loci influencing lung function. Nat Genet 2011; 43:1082.
- Celedón JC, Lange C, Raby BA, et al. The transforming growth factor-beta1 (TGFB1) gene is associated with chronic obstructive pulmonary disease (COPD). Hum Mol Genet 2004; 13:1649.
- Wu L, Chau J, Young RP, et al. Transforming growth factor-beta1 genotype and susceptibility to chronic obstructive pulmonary disease. Thorax 2004; 59:126.
- DeMeo DL, Mariani T, Bhattacharya S, et al. Integration of genomic and genetic approaches implicates IREB2 as a COPD susceptibility gene. Am J Hum Genet 2009; 85:493.
- Pillai SG, Kong X, Edwards LD, et al. Loci identified by genome-wide association studies influence different disease-related phenotypes in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2010; 182:1498.
- Zhou X, Baron RM, Hardin M, et al. Identification of a chronic obstructive pulmonary disease genetic determinant that regulates HHIP. Hum Mol Genet 2012; 21:1325.
- Cho MH, Boutaoui N, Klanderman BJ, et al. Variants in FAM13A are associated with chronic obstructive pulmonary disease. Nat Genet 2010; 42:200.